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Despite 170 years of research, we as a specialty are clueless as to how anesthetics cause 

reversible loss of consciousness, behavior and memory. We know HOW to safely deliver 

anesthesia, but quite literally, we don’t know WHAT we are doing! How did we get in 

this embarrassing predicament? 

 

In the 19
th

 century Claude Bernard showed that anesthetic gases cause reversible 

cessation of purposeful cytoplasmic streaming inside amoeboid cells. Bernard saw 

purposeful cytoplasm as an essential feature of living systems, with anesthesia acting in a 

common, unitary fashion to prevent it. We now know purposeful cytoplasm in amoeba, 

and brain neurons, depends on cycles of assembly/disassembly of cytoskeletal proteins 

comprising actin filaments and microtubules 

 

Following Bernard, the next major research into anesthetic mechanisms occurred at the 

turn of the 20
th

 century. Meyer and Overton found a striking correlation between potency 

of anesthetics, and their solubility in a non-polar, lipid-like, ‘hydrophobic’ environment, 

binding there (it was later discovered) by van der Waals London forces, extremely weak 

quantum-level electron cloud dipole couplings. Because neuronal membranes convey 

signals, and are largely lipid, anesthetics were assumed through much of the 20
th

 century 

to act in a unitary fashion in lipid regions of brain neuronal surface membranes. Claude 

Bernard’s work on purposeful cytoplasm in cell interiors was forgotten. 

 

In the mid-20
th

 century, characterization of the ‘Hodgkin-Huxley neuron’ showed 

signaling along membranes of integrate-and-fire neurons to be conveyed by 

depolarization waves caused by dynamics of receptors and ion channel proteins. In the 

1980s Nick Franks and Bill Lieb
16

 found that anesthetics act directly on proteins, via 

London force interactions in lipid-like, intra-protein non-polar ‘hydrophobic pockets’. 

Anesthetics were also shown to impair post-synaptic dendritic-somatic integration, with 

little or no effects on axonal firing. A search began for one or more post-synaptic 

membrane protein receptors or channels to account for anesthetic action. But decades of 

studies yielded only a confusing mixture of conflicting results (e.g. anesthetics inhibit 

inhibitory proteins and potentiate excitatory ones).
25

 In 2008 Eger et al
15

 concluded there 

was no evidence that anesthetics exert their effects on any particular membrane protein, 

or set of membrane proteins, that despite Meyer-Overton they all acted differently. If a 



unitary mechanism was to be found, they suggested a return to membrane lipid-based 

theories. Again, Bernard’s work on the cell interior was forgotten. 

 

Eger and other authorities also deleted ‘loss of consciousness’ from the definition of 

anesthesia (leaving immobility - lack of purposeful movement - and amnesia). 

Mainstream anesthesia research in the early 21
st
 century has no functional target, and no 

known, or plausibly theorized, mechanism of action. Understanding anesthetic 

mechanisms may require understanding consciousness, and vice versa. 

 

Inquiry into the nature of consciousness began thousands of years ago in ancient Greece. 

In the 17
th

 century Rene Descartes suggested (incorrectly) an anatomical locus for 

consciousness in the brain’s pineal gland. At the turn of the 20
th

 century William James’ 

popularized the concept of consciousness, but scientific inquiry became suppressed by 

behaviorism. Because consciousness cannot be directly measured, for psychologists eager 

to gather experimental data the topic of consciousness became taboo for most of the 20
th

 

century.  

 

In the late 20
th

 century, consciousness returned to scientific discourse, becoming 

attributed to complex synaptic computation among brain neurons, This mainstream 

neuroscientific view, based entirely on membrane-based signaling, lacks testable 

predictions, fails to account for essential features, and requires consciousness to be an 

after-the-fact illusion, without independent or unitary character. Mainstream neuroscience 

has no solid theory of consciousness. Mainstream approaches to anesthetic mechanisms 

and consciousness, both based entirely on membrane dynamics, are aimlessly at sea.   

 

From the standpoint of anesthetic mechanism research, I believe the potential solution is 

threefold. 

 

1. Take seriously the question of consciousness; consider that anesthesia and 

consciousness might have a common unitary feature. Consciousness is an age-old 

scientific and philosophical question, and anesthesia offers a unique opportunity.  

 

2. Look closely at the quantum nature of anesthetic binding by van der Waals 

London forces. Quantum physical laws imply unitary binding, entanglement and 

computing, features which have been implicated in non-mainstream quantum 

theories of consciousness. It may not be coincidence that anesthetics selectively 

erase consciousness via quantum interactions.  

 

3. Return to Claude Bernard. Consider that anesthetic action (and consciousness) 

relate to purposeful activities in (neuronal) cell interiors, specifically in 

cytoskeletal microtubules, rather than strictly from surface membranes. 

   

In the 1980s my colleagues and I began to propose a ‘minority view’ that anesthetics 

acted in a unitary quantum phase in hydrophobic pockets distributed throughout 

microtubule subunit proteins in cytoplasm, as well as in membrane proteins.
18-21

 Under 

normal conditions, we argued, electron cloud London force dipoles in intra-protein 



hydrophobic regions coupled and oscillated coherently, and that this coupling was 

necessary for conscious awareness. We further suggested that anesthetic gases bound in 

these non-polar, hydrophobic regions by their own London force coupling, dispersing 

endogenous coherent London force dipoles necessary for consciousness. With some 

exceptions (e.g. Eckenhoff’s group acknowledges ‘quantum mobility’ theory
22

), our ideas 

have been ignored and ridiculed by mainstream anesthesia researchers (who themselves 

don’t have a theory).  

 

London force dipoles are quantum entities, and offer the possibility of quantum 

computing in microtubules. In the mid 1990s, Sir Roger Penrose and I put forth a theory 

of consciousness based on quantum computing in post-synaptic microtubules 

orchestrated by synaptic inputs and terminated by Penrose ‘objective reduction’, a 

solution to the measurement problem in quantum mechanics. Our theory ‘orchestrated 

objective reduction’ (‘Orch OR’) has been criticized and challenged but never refuted, 

and stands as the most complete theory of consciousness ever proposed.   

 

 

 

 
Figure 1. Anesthesia in dendritic microtubules A. Schematic cytoplasmic interior of 

neuronal dendrite with networks of microtubules. B. Single microtubule with topological 

windings representing information ‘bits’. C. Single tubulin with hydrophobic channel of 

aromatic rings in which anesthetics (red circles) bind.
37

 D. Aromatic rings within 

hydrophobic channel showing London force dipole bits (top) in topological quantum 

computing necessary for consciousness. Below, anesthetics disperse dipole bits (and 



quantum bits, or ‘qubits’), preventing consciousness. 

 

 

The component protein of microtubules is tubulin. Anesthetics bind to tubulin with 

affinity a thousand-fold weaker than anesthetic binding to membrane proteins, however 

there are ~10,000 times more anesthetic tubulin binding sites per neuron compared to 

membrane proteins. At concentrations comparable to one ‘MAC’, labeled halothane 

binds in human brain samples to 23 membrane proteins and 34 soluble proteins, including 

tubulin.
32

 Following binding, proteomic analysis of genetic expression suggests halothane 

functionally acts through protein networks involved in neuronal growth, proliferation, 

division and communication,
32

 all microtubule-dependent functions. In rodent brain 

cortical neurons, genetic expression of seven proteins changed following either halothane 

or isoflurane, with only three proteins affected by both anesthetics. These included 

tubulin, and two others, a heat shock protein, and an acetyltransferase. Genetic expression 

of membrane proteins did not change.
22

 

 

Other studies in rat brain show alterations in tubulin genetic expression for 3 days after 

desflurane,
33

 and 28 days following sevoflurane exposure.
34

 Post-operative cognitive 

dysfunction (‘POCD’) is associated with microtubule instability, and separation from 

microtubules of the microtubule-associated protein tau (same as in Alzheimer’s 

disease).
35-37

 Hypothermia contributes to POCD, and microtubules disassemble at cold 

temperature. Memory encoding has been attributed to microtubule phosphorylation. 

Stability of neuronal microtubules should be a target for POCD prevention and treatment.  

 

Using computer modeling we’ve shown anesthetic binding sites in hydrophobic channels 

of non-polar aromatic rings traversing tubulin (Figure 1).
37

 These hydrophobic pathways 

align with those in adjacent tubulins in microtubule lattices, possibly enabling 

macroscopic ‘quantum channels’ and collective dipoles through microtubules and 

neurons.
37,38

 In such channels, anesthetics can inhibit electron mobility and disperse 

dipoles,
18-21

 thus preventing cognitive activities essential to consciousness and purposeful 

cytoplasm.  

 

Understanding how anesthesia reversibly prevents consciousness, memory and 

purposeful behavior will be a scientific achievement of historic proportions. In this 

endeavor I am proud to stand on the shoulders of Claude Bernard. As I’ve been saying 

for 30 years, dipole dispersion in post-synaptic cytoplasmic microtubules is the most 

logical mechanism for anesthetic action.  
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